水源热泵空调方案-水源热泵空调的工作原理
水源热泵中央空调系统是一种利用地球表面浅层水源(如地下水、河流和湖泊)中吸收的太阳能和地热能形成的低位热能资源,并通过热泵原理将其转化为可利用高位能的系统。该系统主要由水源热泵机组、地热能交换系统以及建筑物内系统组成。
水源热泵技术在实际应用中具有许多优势。首先,它是一种可再生的清洁能源利用技术,能够有效地利用自然界的热能资源。其次,它高效节能,通过少量的高位热能输入,就能实现低位热能向高位能的转化,从而达到节约部分高位能的目的。此外,水源热泵系统还具有一机多用、应用广泛的特点,可以应用于商场、大厦等建筑物中,甚至未来有望进一步应用于家庭住宅、别墅、车库等中小型建筑物中。
从环境效益方面来看,水源热泵中央空调系统可以有效地减少常规燃料的需求和灰、渣、二氧化硫及氮氧化物排放量,有助于减少城市运输量,因此具有显著的环境效益和社会效益。
需要注意的是,水源热泵系统的应用也存在一些限制和挑战,如水资源利用的成本、水层的地理结构限制等。然而,随着技术的不断进步和应用经验的积累,这些问题有望得到解决,水源热泵中央空调系统的应用前景将更加广阔。
水源热泵在冬季供暖中的应用
是以岩土体、地下水或地表水为低温热源,由水源热泵机组、地热能交换系统、建筑物内系统组成的供热空调系统。其工作原理是:冬季,热泵机组从地源(浅层水体或岩土体)中吸收热量,向建筑物供暖;夏季,热泵机组从室内吸收热量并转移释放到地源中,实现建筑物空调制冷。根据地热交换系统形式的不同,地源热泵系统分为地下水地源热泵系统和地表水地源热泵系统和地埋管地源热泵系统。
怎样解决水源热泵中央空调水系统的水质问题?
刘雪玲 朱家玲
(天津大学地热中心)
摘要:利用水源热泵从13~18℃的浅层地下水中提取热量,提供45℃的热水,通过风机盘管进行供暖。本文对热泵供暖的经济性进行了分析,并与燃油、燃气锅炉供暖进行了比较,结果表明热泵是一种节能环保的设备,热泵供暖带来了明显的经济及环保效益。
我国北方地区的冬季漫长,供暖大多通过燃煤锅炉得以实现,这种传统的供暖方式,不仅消耗了大量的煤炭资源,同时,严重污染环境,对人类的生存造成巨大威胁。因此,冬季供暖不能仅仅将其视为解决一个“热”的问题,而是与健康环保和城市形象发展战略紧密相连。因此,如何开发和设计出环保、节能型绿色生态建筑,已成为刻不容缓的课题。
水源热泵是一种比较有代表性的成熟的低耗能采暖技术,为能源结构调整带来了一个比较可行的实施方案。
水源热泵技术是利用地球表面浅层水如地下水、地热水、地表水、海水及湖泊中吸收的太阳能和地热能而形成的低位热能资源,并采用热泵原理,通过少量的高位电能输入,实现低位热能向高位热能转移的一种技术。地能(地下水、土壤或地表水)作为水源热泵的冷热源,冬季把地能中的热量“取”出来,供给室内采暖,此时地能为“热源”;夏季把室内热量取出来,释放到地下水、土壤或地表水中,此时地能为“冷源”。
天津市地矿珠宝公司地处城市中心。长期以来,该公司冬季采用传统的锅炉方式供暖,夏季制冷采用分体式空调机。锅炉燃烧时向大气排放大量的废气、废物,给环境造成极大的污染,严重的环境污染给周围的市民生活既带来不便也严重影响市容市貌;另外,夏季空调系统耗电量大,运行成本高,稳定性差。因此,改造该公司的供暖及制冷系统势在必行。由于公司位于天津市中心,补建热网难度大,燃气、燃油的经济性和安全性均是不容忽视的大问题,同时还存在大气污染。针对这些突出问题,采用水源热泵改造供暖和制冷系统,改造后的系统运行时不仅不会带来任何环境污染等问题,而且还能起到节能、环保等作用。
1 工程概况及要求
地矿珠宝公司要求冬季采暖夏季制冷的总面积为6105m2。其中,1层为珠宝店,3、4、5层为办公室,共114间,2层为客房,共27间。
地下水井采用回灌技术,打有生产和回灌两口井,两口井相距34m,井深均为200m。利用浅层的地下水作为热泵的冷、热源,热泵直接用于冬季供暖和夏季制冷。生产井和回灌井冬夏季互换,即冬季供暖的生产井为夏季制冷的回灌井,冬季供暖的回灌井为夏季制冷的生产井。
水源热泵有2台,其中:1#机组:66kW,制热量300kW,制冷量:260kW。2#机组:45kW,制热量198kW,制冷量:182kW。
一般情况,1#机组运行,冬季供暖时机组白天(8:00~18:00)停3次,每次停45~50分钟;夜晚(18:00~次日8:00)停2次,每次停45~50分钟。由于3、4、5楼为办公楼,下班后(18:00~次日8:00)机组按50%~75%运行。空调设备为“三速开关”控制的风机盘管。低温热泵供暖的系统示意图如图1所示。
图1 低温热泵供暖系统示意图
2 系统运行分析
2.1 技术参数
自2002年11月7日至2003年3月24日(3月16,17日没有供暖),共136天,全天每隔2小时观测并记录系统运行数据。跟踪记录系统运行状态参数一方面为了深入研究系统冬季采暖的运行效果,另一方面为最佳利用地热提供科学依据,为地热供暖的利用和设计提供可靠的参考数据。主要记录参数有生产井和回灌井的温度和流量、供水温度、回水温度、室内温度、室外温度。流量是用流量指示积算仪配以涡轮流量计来测量;供回水温度及抽水井与回灌井水温度来自水源热泵数字仪表显示,精度达0.1℃;室内外温度的记录采用温度计,精确为±1℃,其中室内温度是选一间客房为测试对象而记录的数据。
根据现场实测数据,整理后得到在整个供暖期室内外温度变化曲线、生产井和回灌井的温度变化曲线,分别如图2、图3所示。
从图2 可以看出,在冬季采暖期,室外温度不断变化,其日平均温度变化范围为-8.25~7.67℃,而室内温度基本稳定在22.3℃左右,因此,室内温度能够满足供暖要求。
图2 室内外温度变化曲线
从图3可以看出,抽水井的温度在采暖期基本保持稳定,但随着地热尾水回灌量的持续增加呈下降趋势。抽水井温度的变化可分为三个阶段,即采暖初期至采暖期开始后的第60天,抽水井温度基本稳定在17.5℃左右;随着回灌量的增加,在采暖期开始后的第60天和第72天,抽水井温度发生两次明显的变化后,降至12.81℃;此后,随着采暖期的继续,抽水井温度变化不大,并略呈上升趋势。这是因为,随着供暖日期的增多,累计回灌量增加,抽水井的温度有所降低;而更主要的原因是室外温度的变化对抽水井的温度影响很大,1月份(即供暖的第60~70天)是冬季气温最低的时候,而抽水井的水温也降到了最低点,仅为12.81℃,随着室外温度的回升,抽水井温度也逐渐升高,在采暖期结束时,抽水井温度回升到13.3℃。
图3 生产井和回灌井的温度变化曲线
2.2 经济性分析
初投资:地下水井32万;热泵+风机盘管+管道138万。由于该系统是冬季供暖,夏季制冷,所以初投资的50%计入空调系统。
运行费用包括能耗(电费和水费)、人工费、维修费、折旧费。由于该系统是带有回灌井,免收水费,所以能耗主要费用是电费(表1)。
表1 热泵的运行费用
燃油,燃气锅炉的效率按90%计算,若分别使用燃油、燃气锅炉和热泵供暖,天津市地矿珠宝公司一个供暖期的运行费用(不含设备折旧和维修费用)列于表2。
表2 不同燃料供暖的运行费用比较
3 效益分析
由表1,表2可以看出,利用热泵直接供暖的运行费用较低,这是因为热泵是通过消耗高品位的电能,把热量从低温热源转移的高温环境中,即热泵消耗少量的高品位电能,将产生大量的低品位热能(本文中热泵的cop=4.5),其能量转化效率很高。而燃油、燃气锅炉供暖时,其消耗的是一次燃料,燃烧效率和锅炉效率都不可能是100%,热损较大。所以从能量转化的角度来看,热泵是一种高效的设备。
但是从目前热泵、燃油炉、燃气炉的固定投资来看,热泵的初投资较大。从表1也可看出热泵在一个供暖期的运行费用为9.5万元,而为设备预留的维修费用和设备的折旧费用为9.35万元,其所占的比例很大。从而造成热泵供暖的成本较高。但是由于热泵供暖的运行费用低,几个供暖期下来所节省的运行费用也可以折抵热泵在初投资上多投入的费用。另外热泵机组还可以在夏季用于制冷,投资一套装置可以冬夏两用,这在投资上也有一定的优势。
从环保效益来看利用水源热泵供暖,即不影响大气环境,也不消耗和污染水资源,地热供暖和制冷装置无压力、无燃烧、无爆炸的危险,也没有废弃物,不需要堆放燃料废物的场地,取消了锅炉房、储煤场、堆灰场、消烟防尘设施等,且不用远距离输送热量。可以大大改善了工人的工作环境和工作强度。
天津地矿珠宝公司供暖总面积为6105m2。每年供暖期实际消耗热负荷为2325 GJ,相当于标煤113.55 t。因此,每年减少二氧化硫、氮氧化物、二氧化碳和煤尘等污染物的排放量分别为4769.4kg、1430.82kg、122.41m3和1112.86kg。同时,每年节约废气废物治理费及其它费用为47725.80元。其环境效益很显著。
当然热泵消耗的主要是电能,而电能的获得需要耗费一次能源(我国目前主要是耗煤),因此在电能的生产过程中也存在污染问题,但是从工程本身来说,其没有消耗一次能源,没有给环境造成直接污染,其环境效益还是很显著的。
4 结论
(1)利用热泵供暖的运行费用较低,但由于其初投资高,所以其成本还是比较高,
(2)虽然目前利用热泵直接供暖的成本比较高,但是节约了一次能源和环保的费用,取得了明显的环境效益,且可以一机两用,冬天供暖,夏季制冷。所以从环保的角度来看热泵供暖还是很经济的。尤其在环境要求较高的大、中城市,热泵供暖有一定的优势。
总之,在环境问题日益突出的今天,高效清洁地使用能源已成为一个备受关注的课题。利用热泵供暖应用了环保、安全、绿色、节能采暖新理念,开创了一条新的环保采暖方式。随着环境问题的日益严重和人们环保意识的增强,热泵供暖必将得到广泛的推广和应用。
参考文献
[1]冯渝荣.某节能小区水源热泵空调系统冬季采暖运行的经济分析.制冷与空调,2002,2(4):68~72
[2]李新国,赵军.低温地热运用热泵供热的技术经济分析.太阳能学报,2000,16(1):447~450
[3]朱家玲,苗常海等.地热水源热泵技术应用市场前景.太阳能学报,2002,23(6):447~450
[4]郭志军,王敏.水源热泵系统的概论分析.低温与特气,2001,19(5):8~9
水源热泵中央空调用水量计算
水源热泵中央空调采用地下水做循环水,由于地下水含有一定量的泥砂、悬浮物和不同的离子、分子、化合物和气体。进入机内后,不但对管路和阀件造成磨损,产生堵塞而使回水量降低,而且由于化合物的化学作用还会在机组内产生结垢,影响换热效果。因此,必须通过水处理来提高水质。常用的水处理技术有以下几种:
(1)制订水质标准
水源热泵中央空调水质标准应该是:夏季供冷运行时,其循环水的水质标准应遵守冷水水质标准。冬季供热运行时,其循环水的水质标准应遵守采暖用水的水质标准。
(2)水源水中含砂量较高的处理
对含砂量较高的水源,可在水源水管系统中加装旋流除砂器,通过除砂器来降低水中的含砂量。避免机组管阀的磨损和堵塞。
(3)水源浑浊度较大的处理
对浑浊度较大的水源,可安装“全程水处理器”,全程水处理器是通过机械变径、活性铁质滤膜及电晕效应三位一体的方法对水质进行综合过滤处理,从而达到降低水的浑浊度的目的。
(4)排除悬浮物
排除悬浮物一般采用回扬方法,即在回灌井中,开泵抽出水中的悬浮物,或采用倒井的方法,排除水中的悬浮物,以提高水的清晰度。
水源热泵为什么节能
水源热泵两边都是水换热,两边换热器都是按照进出水温差5度设计的,所以不管是冷却水还是空调水,都应按照5度温差计算流量才合理。蒸发器这边按照制冷量计算流量,冷凝器这边按照制冷量加压缩机功耗计算流量。有的厂家样本标称的井水流量偏小,主要考虑减少地下水抽水量,能够保证井水回灌的,井水流量应当按照5度计算,主机才能获得最佳能效。
地下水源热泵空调系统的变频控制?
、水源热泵系统节能性
以采暖运行为例,目前采暖方式有集中锅炉房供热方式、热电厂供热方式、分户燃气采暖方式,水源热泵方式有利用井水、江、河、湖泊水及工业余热形式;也有利用自来水冬季要辅助加热方式。它们耗能量见表1。
耗能量比较 表1 采暖方式 现有住宅建筑 节能建筑
耗能量 折算至标准煤 耗能量 折算至标准煤
集中锅炉房 25.08Kg/m2.年 25.08Kg/m2.年 12.41Kg/m2.年 12.41Kg/m 2.年
热电厂 13.96Kg/m2.年 13.96Kg/m2.年 9.03Kg/m2.年 9.03Kg/m 2.年
分户燃气采暖 10.6Nm3/m2.年 13.02Km3/m2.年 6.86Nm3/m2 .年 8.43Kg/m2.年
水源热泵(井水、河、湖水) 22.46kwh/m2.年 9.16Kg/m2 .年 14.54kwh/m2.年 5.93Kg/m2.年
水源热泵(加辅助热源) 22.46kwh/m2.年4.34Kg/m2.年 13.5Kg/m2 .年 14.54kwh/m2.年2.81Kg/m2.年 8.74Kg/m2.年
表1计算依据:
① 住宅建筑为北京市多层住宅,现有建筑耗热量指标q?H为31.82W/m2,设计热负荷指标为q为43.82W/m2,节能建筑q?H为20.6W/m2,q为28.37W/m2。采暖全年需热量:现有 建筑为95.46kwh/m2年,节能建筑为61.80kwh/m2年。
② 集中锅炉房:现有供热系统热网输配效率η?1为0.85,锅炉效率η?2为0.55,节能供 热系统η?1为0.9,η?2为0.68,
③ 热电厂供电标准煤耗为0.408Kg/kwh,供热标准煤耗为40.7Kg/GJ。
④ 水源热泵采暖COP=4.25。
从表1可知,水源热泵采暖方式全年耗能量均低于集中锅炉房和热电厂,节能效益比较明显。
利用井水、江、河水或工业余热为热源水源热泵节能性十分明显,当水源热泵能效系 数4.0时,与热电联产供热方式比,采暖节能性率约为40%。 当采用辅助加热热源时,水源热泵节能性是有条件,主要影响因素是:水源热泵能效系数;辅助热源加热容量。
① 水源热泵能效系数影响(见表2)
制热容量为4KW时能耗* 表2 / COP=4 COP=4.5 节能率
(%)
辅助加热量
耗能(kg标煤) 3×860/7000×0.9=0.409 3×860/7000×0.9=0.409 /
压缩机耗能
(kg标煤) 1×0.408=0.408 0.88×0.408=0.363 /
合计 0.817 0.771 5.6
*辅助加热容量为总供热量75%。
从表2可知,COP从4提高到4.5后,节能率约为5.6%,相当于减少加热容量0.3296KW,即约相 当于减少热负荷10%。
② 辅助加热器加热容量影响(见表3)
制热容量为4KW时能耗* 表3 / 辅助加热容量/总供热量0.75 辅助加热容量/总供热量0.5 节能率(%)
辅助加热量耗能(kg标煤) 0.409 2×860/7000×0.9=0.273 /
压缩机耗能(kg标煤) 0.408 1×0.408=0.408 /
合计 0.817 0.681 16.6
*COP=4
从表3可知,当辅助加热容量为总供热量比从0.75降到0.5时,节能率约为16.6%。
③ 节能条件
制热容量为4KW热电联产能耗为:
(4×860)/( 7000×0.83×0.85) =0.697kg/4kwh
由此可知:
当COP=4.0,辅助加热容量为总供热量0.5时,与热电联产供热方式比,它节能率 约为2%。
当COP=4.5,辅助加热容量为总供热量0.5时,与热电联产供热方式比,水源热泵节能率约为8%。
但当COP=4.0,辅助加热容量为0.75总供热量时,热电联产将比水源热泵节能,节能效率约 为15%。当COP=4.5时,其节能率约为10%。
节能主要因素如下:
① 水源热泵机组直接安放户内,热网输配损失可忽略不计。
② 水源热泵机组采暖能效系数COP大于4,部分负荷时,COP值仍很稳定。
③ 以井水,江、河、湖水及工业余热低温热作为热泵热源水源热泵系统,采暖耗热量仅 为全年需热量1/4。
④ 以自来水为热源冬季需加辅助热源水源热泵系统,考虑压缩机发热量,住宅同 时使用系数及夜间调节温度等措施后辅助加热容量约为热负荷1/2~1/3,加热量约为全年 需热量1/2~1/3。
二、水源热泵系统经济性
经济性指是各种空调采暖方式初投资、运行费和热价。
目前国内外已采用采暖空调联供方案有:
① 热电冷三联供: 夏季,热电厂抽汽+蒸汽吸收式制冷
冬季,热电厂抽汽+汽水换热器供热
② 热电冷三联供: 夏季,热电厂热水+热水吸收式制冷
冬季,热电厂热水+汽水换热器供热
③ 直燃式冷热水机组:夏季、冬季,直燃式冷热水机组制冷、供热
④ 燃气-蒸汽联合循不
⑤ 电制冷+燃气(油)锅炉采暖
⑥ 电动水源热泵。这类机组运行性能稳定,性能系数COP值较高,理论计算可达7,实际运 行时约为5,且可充分利用江河、湖、海水等自然能源,冬季供暖耗能少,是一种节能性好冷热源设备。
⑦ 空气源热泵。冷热源兼用,整体性好,安装方便,可露天安装,采用风冷,省却了冷却 塔及冷却水系统,缺点是当室外温度较低时,需增加辅助热源。各种方案投资和成本(不 包括户内系统)见表4。
各方案投资和成本比较* 表4 项目 热电冷
(蒸汽) 热电冷(热水) 直燃式 电制冷锅炉供热 集中式电动水源热泵 分体式空气源热泵 燃气-蒸汽联合循环
投资(万元/KW) 0.197
/0.223
(含源网) 0.275
/0.302
(含源网) 0.207 0.206 0.335 0.199 0.436
成本(元/KWH) 0.139 0.151 0.214 0.207 0.167 0.220 0.081
*为《住宅区三联供系统研究》中提供数据,成本为年运行成本。
下面以兴降矿十八层单身职工宿舍为例,说明水源热泵采暖空调联供方案经济性。
十八层单身宿舍建筑形状为Y形,总采暖空调建筑面积为9564m2,2~18层为标准层,标准层面积为562.6m2,设计冷热负荷为573.84KW。表5为采暖空调联供方案,表6为各方案初 投资比,表7为各方案运行费比较,表8为各方案综合比较。
采暖空调方案 表5 序号 方案 采暖空调方式 备 注
方案1 以下水为冷热源水源热 泵(水-空气) 冬天:热泵产生热风送至户内夏天:热泵产生冷风送至户内 每户设 热泵一台将风送至各房间
方案2 以下水为冷热源水源热泵(水-水) 冬天:热泵产生热水送至风机盘管 夏天:热泵产生冷水送至风机盘管 热(冷)源集中、每户设风机盘管
方案3 电制冷+热电厂采暖 冬天:热电厂蒸气+汽水换热器夏天:中央空调 机送冷水至风机盘管 热(冷)源集中、每户设风机盘管
对比方案 分体空调+锅炉房采暖 冬天:锅炉房(热电厂)供热,户内 散热器 夏天:每户安装分体空调机 热源集中、冷源分散空调品质较差
各方案初投资比较 表6
方案1(进口) 方案2 方案3 对比方案
进口 国产
初投资*(万元) 237.4 305.8 238.2 236.6 267.15
单位建筑面积投资(元/m2) 248 319.7 249.1 247.4 279
*计算时包括安装费15%,运行调试费5%,税及管理5%,设计费2%和利润10%。
各方案运行费比较(元/m2) 表7
方案1 方案2 方案3 对比方案
采暖 空调 采暖 空调 采暖 空调 采暖 空调
不考虑同时使用系数,热回收系数 19.25 19.25 9.5 6.2 9.5 7.2
合计 19.25 19.25 15.7 16.7
考虑修正系数 10.78 10.78 9.5 4.34 9.5 7.2
合计 10.78 10.78 13.84 16.7
〖BG)F〗 兴隆矿处兖州市,兖州市气象资料,该区冬季采暖期天数106天,延时小时数2 544小时,最大负荷小时数2544*(20-0.4)/〔20-(17)〕=1847小时。夏季空调期天数90天, 延时小时数2160小时,济南、淄博三联供实际测试资料,取夏季最大负荷小时数为720 小时。则单位建筑面积,采暖期需供热量60W/m2*1847=110.5kwh,空调期需冷量60W/m2* 720=43.2kwh。
各方案综合比较 表8 方案 单位供热(冷)量能耗(kg标煤/kwh) 单位供热(冷)量系统投资(万 元/KW) 单位供热(冷)量设备全年运行费(元/kwh)
方案1 0.057 0.414(进口) 0.07
方案2 0.057 0.533(进口)/0.415(国产) 0.07
方案3 0.133 0.412 0.12
对比方案 0.148 0.465 0.11
从表6、表7、表8对比可知,兴隆矿实施采暖空调,以方案1为佳。
前面提到方案1水源热泵(水-空气),方案2水源热泵(水-水)技术与经济上都是可采用 方案。但方案2中大型水源热泵是一种集中冷(热)源方式,目前,国内尚无大型水源热泵 厂家,进口设备较贵,而国产水源热泵系列不全,单台容量较小,将多台设备集中放置机房时,才能形成集中冷(热)源形式,投资较大,安装运行维护不便。
是从单位供热(冷)量所需能耗,从投资和运行费上看方案1都具有明显优越性。 其中进口热泵机组价格与方案2中国产设备投资相近,但比方案2进口设备价格低多, 且不要另建机房。,十八层楼单身宿舍拟采用方案1为实施方案。
水源热泵采暖空调联供方案投资偏低主要原因:
① 不设专用机房。中央空调机房面积(包括空调装置、电气及其它)约为空调建筑面积5 ~8%,其中空调装置约占4~5%,以10层建筑物为例,其中机房约占一层。水源热泵将空调 装置分散设每户,减少了机房建设费用,寸土寸金区,增加办公面积,营业面积作用就更大了。
② 封闭水管不要保温,对竖井没有特殊要求。中央空调系统竖井占有较多建筑物有效 面积,全空气系统竖井面积更大。竖井布置是否恰当,会影响空调系统效率,对空调投资有较大影响。
③ 不占有房间有效面积,中央空调系统户内装置风机盘管放置窗户下,对住宅 影响较大。
水源热泵联供方案运行费偏低原因:
① 水源热泵采暖运行时,约占总供热量3/4吸收热来自井水,江、河低温热或工业余热 ;空调运行时,约为总制冷量1.2倍总散热量由低温热或工业余热分摊,,较多降 低了采暖、空调系统运行费。
② 水源热泵机组直接设置用户房间内,减少了输配损失。
③ 水源热泵机组能效系数较高,且性能系数稳定性较好。
④ 水源热泵系统具有热回收性能。当同一建筑中有房间需供热,有房间需空调时,往 往无需冷却及辅助加热。
三、水源热泵系统可靠性
采暖、空调系统运行可靠性指是系统稳定性好,调节灵活。所谓稳定性好指 是采暖空调房间温度、湿度、气流速度等热舒适性参数不受外界影响,保持设计范围内,即当系统某一部分发生事故,或某用户设备发生故障时,对另外房间没有影响或 影响较少。水源热泵系统热泵机组设置每个房间内,当某一台发生故障后,将联接该设备供、回水阀关断,就不会对相邻用户产生任何影响。说,水源热泵稳定性非 常好。
水源热泵温度自控装置组合热泵机组中,无需另设控制中心或控制室,用户自己 愿望,可灵活控制室温和风机转速。这种方式适合于公共建筑,对不同年龄、不同职业和不同生活要求居住住宅建筑来说,这就显更为重要了。
除此之外,水源热泵系统便于进行热计量,物业公司用户耗电量就可向用户收费,是 解决当前采暖、空调收费难一项重要举措。
四、设计是水源热泵实现可靠性、经济性、节能性保证条件之一
水源热泵机组为水源热泵空调采暖系统创造了关键性条件,没有这种机组,就不 存这种系统。但机组运行好坏与源、网、机组系统组合方式密节相关。即与系统设计密切相关。
水源热泵采暖空调系统设计特点见表9
水源热泵系统设计特点 表9 项目 水源热泵 中央空调
水系统 水温(℃) 15℃/35℃ 空调7℃/12 ℃采暖60℃/50℃
水量(m3/h)流速(m3/s) 每冷吨0.191/s0.684m3/hV≯0.83m /sG≮1GPM=0.0631/s 空调制冷量/5℃ 采暖 制热量/10℃
风系统) 风量(l/s)送风温差(△t)风速(m/s) 每冷吨142~248l/s(高、中、低三档)511~893m3/h=约10℃~15 ℃主干管2~3支干管2~2.5m/s 用户要求、要求高、△t小、风量大。主干管3-4m/s、主干管2.5-3m/s
补助加热量(KW) 按吸热量计算、考虑同时使用系数 或夜间改变设计参数后,补助加热量约为设计热负荷1/2~1/3 按设计热负荷计算
冷却塔 按总散热量0.6~0.8选择冷却塔 按总散热量计算
自动控制 热泵专用控制;恒温调节器、自动转换开关、水温控制器、机 组安全控制、风速三档控制 户内:风机盘管三速控制中央控制室温度、压力、流量 控制
运行参数* 表10 参数 空调运行 采暖运行
最低 标准 最高 最低 标准 最高
运行 进风 干球 温球 21 14 24 18 29 26 13 - 20 - 21 -
水 进水 出水 7 12 33 38 59 54 -4*2?-6*2 18 14 29 26
极限 进风 干球 温球 18 12 - - 35 26 5 - - - 27 -
水 进水 出水 7 12 - - 49 54 - 4*2?-6*2 ? - - 29*3?26*3?
〖BG)F〗
注:[WB]*1机组送风量为每冷吨0.16m3/s,水流量为每冷吨0.16升/s至0.19升/s。
[DW]*2此时为乙稀乙二醇溶液。
[DW]*3短时间内可以为35/28℃。
水源热泵系统设计时要注意以下几个问题。
① 水源热泵机组容量不要过大。中央空调冷热源设备选型时,设备制冷(热)量约为设计 冷( 热)负荷1.05~1.10。水源热泵机组选型时,应尽量接近设计冷(热)负荷。若机组偏大时 ,运行时间短,启动频繁。机组容量合适,运行时间长,有利于除湿。
② 封闭水系统水温选择,夏季要求水温低些,目是提高能效,降低耗电功率。冬季水 温不要太高,水温高时,制冷量高了,但耗电功率也高了,能效系数变化不大。
③ 设计时要考虑采暖空调对象建筑物同时使用系数。同时使用系数取值与建筑物类型 有关,与建筑物数量有关,需理论计算和实测确定。《住宅建筑空调负荷计算中同时使用系数确定》列出数据是:当住户〈100户时,该系数为0.7;当户数为100~150户时, 为0.65~0.7;当户数为150~200户时为0.6。
五、结束语
从以上分析可知,水源热泵系统是一种可靠、经济、节能采暖方式。如此, 它使用清洁能源,它节能效果明显,节能就是环保,电力已进入买方市场条件下,人民生活条件迅速改善条件下,水源热泵无疑将是一种受大家欢迎采暖空调方式
(参考)北京华阳水/地源热泵 010-81762900
本文针对湖南某宾馆采用的地下水源热泵中央空调系统的运行现状,根据其自身特点提出对该系统空调水泵进行变频控制节能改造的建议和方案,并采用当量峰值小时数法从节能性和静态回收期两方面详细论证了该改造方案的可行性。结果证明,该改造方案在保证不低于热泵机组对水量的最低要求的同时,根据负荷的变化自动调节水泵的流量,节能效果显著,静态回收期短,是切实可行的。
关键字:地下水源热泵 变频控制 节约能源1 引言
集中式中央空调系统在为人们营造舒适环境的同时也带来了能耗问题,如何既满足空调舒适度,又最大限度的节约能源,已日益为人们所关注。目前空调系统设计和水泵等设备选型均是按最不利工况进行的,且留有一定的裕量。由于季节、昼夜和用户负荷的变化,实际空调热负载在绝大部分时间内远比设计负载低,空调系统多数时间是在部分负荷下运行。而运行情况是空调水泵一年四季长期在额定工况下工作,只能通过节流来降低水流量满足负荷的要求,使得水泵大部分功耗消耗在克服节流阀阻力上,浪费了水泵运行的输送能量。一般空调水泵的耗电量约占总空调系统耗电量的20-30%,故节约低负载时水系统的输送能量,对降低整个空调系统能耗具有重要的意义。
本文针对湖南某宾馆采用的地下水源热泵系统,根据其运行现状提出对该系统的空调水泵进行闭环自动变频控制节能改造,从节能性和静态回收期等方面论证了该改造方案是切实可行的。
2 空调系统概况
该宾馆位于长江中下游地区的湖南省西北部的澧县,作者于2003年1月至3月对该宾馆地源热泵系统的冬季运行工况进行了测试,测试结果整理如表1。由于宾馆的入住率、室外气温变化、人员活动内容等原因,该系统基本上是在设计负荷80%及以下运行,其中运行于设计负荷的60%以下的就占有63.48%。显然根据满负荷状态选取的热泵机组、水泵等设备让其在部分负荷下长期连续运行,设备大部分时间处于低效率工作状态。该系统热泵机组一大一小并联运行,制热量分别为100KW、40KW;两台的并联热水循环泵型号相同,其铭牌额定功率均为2.2KW;深井泵铭牌额定功率为7.5KW(系统图如图1所示),且所有水泵均定流量运行,始终处于工频状态下运转。当机组处于部分负荷运行时,常常通过关小管路上的阀门来调节供水量,造成了极大的能源浪费,因此我们有必要对该空调系统进行一下改进。3 改造方案的提出
热泵主机、深井泵和热水循环泵是宾馆中央空调系统的主要组成部分,耗电量大。由图2可以看出,在该空调系统中,热泵机组的功耗占整个空调系统能耗的65%,深井泵和热水循环泵分别为24%和11%,因此要节省整个空调系统的能耗,除大力减少热泵机组的能耗以外,减少空调水泵的能耗也是一个重要方面。
该系统的地源热泵机组本身即具有能量自动调节功能,可以在不改变制热工况的前提下,改变压缩机的输气量进而改变供液量来调节冷凝器的产热量。同时,这又为水系统的变流量运行提供了基本条件。
对于空调水泵而言,由于水泵处于定流量运行,在部分负荷状态下常常只能通过调节管路上的水阀开度来改变水流量;同时因电机转速不可调,电机只能工作在开和停两种状态,即使当热负荷很小时,也必须至少开一台,电机轴上的输出功率远大于实际负荷的需要,从而造成不必要的能源浪费。根据水泵的相似律,水泵的流量、扬程、功率具有如下关系:
(1)
式中Q, H, N, n分别为水泵的流量、扬程、轴功率和转速。
从式(1)可以看出水泵的扬程与水泵流量的平方成正比,轴功率与流量的立方成正比,而流量又与转速成正比。由此可见当电机的转速稍有下降,电机的耗电量就会大幅度下降,节能效果显著。水泵的变频调速装置就是通过调节水泵的转速以使水泵流量随负荷变化而变化,达到节能目的。
4 水泵变频调速工作原理及其控制方案
4.1 水泵变频调速原理
水泵功率、流速、流量、扬程之间具有式(1)所示关系,又由于交流异步电动机的转速与电源频率之间的关系为:
(2)
式中n,f,S,P分别为电机的转速,供电电源频率,转差率,电机极对数。
由式(2)可知,当转差率变化不大时转速正比于电源频率,只要能平滑调节电源频率,就能平滑调节电机转速。1水泵变频调速就是通过改变电源频率来调节水泵转速的一种方法。采用变频技术结合合理的自控方案,对水泵进行变流量调节,不仅避免了采用阀门调节造成的浪费,而且还极大的提高控制和调节精度。同时采用变频调速对电机实现软启动,无冲击杂声,还可以延长电机的使用寿命。
4.2 深井泵变频调速控制方案
对于深井泵来说,由于深井水温度常年保持不变,维持在18.5℃左右,我们以深井水回水温度为控制参数即可控制井水的进出口温差。如图3所示,现采用温度传感器、变频器、PID回路调节器组成闭环控制系统,按照5~7℃的温差指标,深井水回水温度控制在T℃(例如冬季12℃,夏季25℃),使深井水泵的转速相应于热负载的变化而变化。以冬季为例,当负荷增加时,深井水回水温度降低,温度传感器将温度信号(4~20mA)反馈至PID回路调节器中,PID调节器根据温度设定值和温度反馈值的偏差进行PID运算,然后输入给变频器一个提高电机运转频率的信号,加大水泵转速和流量,直到温度与设定值一致;反之负荷降低时,减小频率,降低水泵转速和流量。当水泵运行频率降到控制仪表设定的低限值时,变频器停止频率的继续降低,以满足主机对流量的要求,对主机起到保护作用。
4.3 热水循环泵变频调速控制方案
由于该热水循环系统由两台型号相同的水泵并联运行,为了实现两台水泵电机转速连续可调,使得水泵电机转速根据实际热负载的大小而设定,进而节约能源;同时也为了节省变频器等设备的初投资,作者拟采用一定一变形式,即只有一台水泵配备变频器作调速运行,另一台仍为定速运行。控制系统主要由内置PID的变频器、PLC可编程控制器、压差变送器、主接触器等构成,如图4所示,变频器和PLC控制器作为系统控制的核心部件,以末端最不利环路压差为反馈信号,时刻跟踪着该信号与设定值(可取0.1Mpa)的偏差变化情况,经过变频器内置的PID调节器运算,利用PLC控制器实现水泵变频与工频的切换,自动控制水泵投入台数和电机的转速,实现闭环控制,自动调整恒压差变量供水。
当系统负荷较小时,只需一台电机工作在低于工频状态下即可满足要求时,PLC利用变频器软启动一台水泵,根据压差变送器反馈来的信号(0~10V)自动调节运行频率。当热负荷增大时,变频器输出频率接近工频而管网压差仍达不到设定值,为了保证系统不频繁切换水泵,延时一段时间,若压差仍低于设定值时,则PLC将当前工作的变频泵切换至工频50HZ状态下运行,关断变频器,再由变频器从0HZ软启动下一台水泵,并根据偏差变化情况及时利用变频器调整到对应流量需要的频率,实现一台变频一台工频双泵供水。反之,当负荷降低时,变频器工作在基本频率时,如果出口流量仍然很大,供水压差高于设定值,同样延时一段时间后,若压差仍然很高,此时再由PLC关掉工频控制方式的水泵,只由剩下的单泵变频供水。无论系统是单泵变频运行还是双泵一定一变运行,均能实现末端恒压差供水。切换示意图如图5所示。
5 水泵变频节能计算
5.1 变频节能计算方法
本文参照文献4、5的算法,采用当量峰值小时数法计算空调运行期间的能耗,夏季当量小时数τ夏,冬季当量小时数τ冬,空调系统全年运行小时数t。设水泵的铭牌额定功率为N(KW),在未采用变频技术的情况下,空调水泵的全年耗电量Q1为:
Q1=N-t ,KWh (3)
而采用变频调速后全年用电量Q2为:
Q2=N-(τ夏+τ冬),KWh (4)
则全年可节省的电量为
ΔQ=Q1-Q2=N-t-N-(τ夏+τ冬),KWh (5)
静态投资回收期 n=,年 (6)
式中 M0 - 分别为采用变频技术增加的初投资,元
M1 - 每年节省的运行费用(主要是能源费用),元
湖南省商业用电电价为0.98元/度。宾馆全年以冬、夏两季6个月运行计算,每天平均运行18个小时(6:00-24:00),文献5的当量湿球温度小时数的数据公式是针对上海地区得出,由于湖南省和上海气候条件相差不大,因此本文也近似采用此公式
τ夏=3097.32-102.16tns τ冬=567.37+36.43 tns (7)
tns- 室内设计湿球温度值 这里夏季取tns =20.3℃;冬季取tns =12.3℃。
代入式(7)得:τ夏=1023.4h,τ冬=1015.5h
5.2 深井泵节能效果分析
深井泵铭牌额定功率N=7.5KW,一台,拟选富士FRN7.5G11S-4CX变频器一台,市场报价6410元,加上其它外围设备共计总投资为M0=7000元。将其数据代入上式(5)、(6)中得:
ΔQ=Q1-Q2=7.5*6*30*18-7.5(1023.4+1015.5)=9008.25KWh
折合成人民币每年可节约电费M1=9008.25*0.98=8828元,节能效果显著。
静态投资回收期n===0.79年,9个半月即可回收初投资。
5.3 热水循环泵节能效果分析
热水循环泵铭牌额定功率N=2.2KW,两台,拟选富士FRN2.2G11S-4CX变频器一台,市场报价3920元,三菱FX2N-16MR-001 PLC可编程控制器一台,市场报价3080元,加上其它外围设备共计总投资为M0′=8000元。将其数据代入上式(5)、(6)中得:
ΔQ′==2.2*2*30*6*18-2.2*2(1023.4+1015.5)=5284.4KWh
折合成人民币每年可节约电费M1′=5284.4*0.98=5179元,节能效果显著。
静态投资回收期n′===1.5年,一年半即可回收初投资。
6 结论
综上所述,根据地下水源热泵中央空调系统的运行特点,提出采用变频控制装置对系统进行改造,在保证不低于热泵机组对水量的最低要求,自动调节水泵流量以满足负荷的变化,节能效果显著,静态回收期短,具有一定的可行性。
参考文献
(1) 龙有新. 第十二届全国暖通空调技术信息网大会文集. 北京:中国建材工业出版社. 2003. 185~189
(2) 韩焱青. 武汉化工学院学报,2000,22(4):70~73
(3) 张戟 龚固丰.计算机与自动化,1999,18(4):18~19
(4) 钱锋 郑中磊. 建筑热能通风空调,2002,21(5):51~52
(5) 陈沛霖 岳孝方. 空调与制冷技术手册. 上海:同济大学出版社,1991
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:#/?source=bdzd
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。