1. 首页 > 家电资讯

太阳能光伏发电的原理的教学视频-太阳能光伏发电的原理

太阳能光伏发电的原理的教学视频-太阳能光伏发电的原理

光伏发电只要有光就能发电这种说法并不确切,这个光是太阳光。

原理

光伏发电的主要原理是半导体的光电效应。光子照射到金属上时,它的能量可以被金属中某个电子全部吸收,电子吸收的能量足够大,能克服金属内部引力做功,离开金属表面逃逸出来,成为光电子。

硅原子有4个外层电子,如果在纯硅中掺入有5个外层电子的原子如磷原子,就成为N型半导体;若在纯硅中掺入有3个外层电子的原子如硼原子,形成P型半导体。当P型和N型结合在一起时,接触面就会形成电势差,成为太阳能电池。当太阳光照射到P-N结后,空穴由N极区往P极区移动,电子由P极区向N极区移动,形成电流。

光电效应就是光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。它首先是由光子(光波)转化为电子、光能量转化为电能量的过程;其次,是形成电压过程。

多晶硅经过铸锭、破锭、切片等程序后,制作成待加工的硅片。在硅片上掺杂和扩散微量的硼、磷等,就形成P-N结。然后采用丝网印刷,将精配好的银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面涂一层防反射涂层,电池片就至此制成。

电池片排列组合成电池组件,就组成了大的电路板。一般在组件四周包铝框,正面覆盖玻璃,反面安装电极。有了电池组件和其他辅助设备,就可以组成发电系统。为了将直流电转化交流电,需要安装电流转换器。

发电后可用蓄电池存储,也可输入公共电网。发电系统成本中,电池组件约占50%,电流转换器、安装费、其他辅助部件以及其他费用占另外 50%。

扩展资料

在进行光伏发电系统的设计之前,需要了解并获取一些进行计算和设备选择所必需的基本数据:如光伏发电系统安装的地理位置,包括地点、纬度、经度和海拔;该地区的气象资料,包括逐月的太阳能总辐射量、直接辐射量以及散射辐射量,年平均气温和最高、最低气温。

最长连续阴雨天数,最大风速以及冰雹、降雪等特殊气象情况等。要求所设计的光伏发电系统具有先进性、完整性、可扩展性、智能化程度高,以保证系统安全性、可靠性和经济性。

(1)先进性。随着国家对于可再生能源的日益重视,开发利用可再生能源已经是新能源战略的发展趋势。根据当地太阳日照条件、电源设施及用电负载的特性,选择利用太阳能资源建设光伏发电系统,既节能环保,又能避免采用市电铺设电缆的巨大投资(远离市电电源的用电负载),是具有先进性的电源建设方案。

(2)完整性。太阳能光伏发电系统包括:太阳能电池组件、蓄电池、控制器、逆变器等部件。光伏发电系统可以独立对外界提供电源,也可与其他用电负载和市电电源配套,形成一个完整的离网和并网的光伏发电系统。光伏发电系统应具有完善的控制系统、蓄能系统、功率变换系统、防雷接地系统等构成一个统一的整体,具有完整性。

(3)可扩展性。随着太阳能光伏发电技术的快速发展,光伏发电系统的功能也会越来越强大。这就要求光伏发电系统能适应系统的扩充和升级,光伏发电系统的太阳能电池组件应为并联模块结构组成,在系统需扩充时可以直接并联加装太阳能电池组件模块。

控制器或逆变器也应采用模块化结构,在系统需要升级时,可直接对系统进行模块扩展,而原来的设备器件等都可以保留,以使光伏发电系统具有良好的可扩展性。

(4)智能化程度。所设计的太阳能光伏发电系统,在使用过程中应不需要任何人工的操作。控制器可以根据太阳能电池组件和蓄电池的容量状况控制负载端的输出,所有功能都由微处理器自动控制,还应能实时检测太阳能光伏发电系统的工作状态,定时或实时采集光伏发电系统主要部件的状态数据并上传至控制中心。

通过计算机分析,实时掌握设备工作状况,对于工作状态异常的设备,发出故障报警信息,以使维护人员可提前排除故障,保证供电的可靠性。

百度百科-光伏发电系统

百度百科-光伏发电

光伏发电系统的发电原理是什么,阴雨天能否正常使用呢?

光伏发电的原理是什么如下:

光伏发电原理:光伏发电是一种利用半导体界面的光伏效应将光能直接转化为电能的技术。这项技术的关键是太阳能电池。太阳能电池串联后,可以封装保护成大面积太阳能电池组件,配合功率控制器等部件组成光伏发电装置。

光伏发电的主要原理是半导体的光电效应。当光子撞击金属时,其能量可以被金属中的一个电子完全吸收。电子吸收的能量大到足以克服金属内部重力,从金属表面逃逸出来成为光电子。硅有四个外层电子。

如果纯硅掺杂有五个外层电子的原子,比如磷原子,就会变成N型半导体。如果纯硅掺杂有三个外层电子的原子,例如硼原子,就形成了P型半导体。P型和N型结合在一起,接触面就会形成电位差,成为太阳能电池。

**封面阳光照射在半导体pn结上,形成新的空穴-电子对。在pn结内建电场的作用下,空穴从N区流向P区,电子从P区流向N区。电路接通后,就形成了电流。这就是光电效应太阳能电池的工作原理。

太阳能发电有两种方式,一种是光-热-电转换,另一种是光电直接转换。(1)光-热-电转换模式利用太阳辐射产生的热能发电。一般太阳能集热器将吸收的热能转化为工质蒸汽,然后驱动汽轮机发电。

前一个过程是光热转换过程;后一个过程就是热电转换,和普通火力发电一样。太阳能热发电的缺点是效率低,成本高。据估计,其投资至少比普通火电厂贵5~10倍。

(2)光电直接转换模式这种模式利用光伏效应将太阳辐射能直接转换成电能。光电转换的基本器件是太阳能电池。太阳能电池是一种利用光伏效应将太阳能直接转化为电能的装置。它是一个半导体光电二极管。

当太阳光照射到光电二极管上时,光电二极管会将太阳能转化为电能,产生电流。当许多电池串联或并联后,就可以成为一个输出功率比较大的太阳能电池阵列。太阳能电池是一种很有前途的新能源,它有三个优点:永久、清洁和灵活。太阳能电池寿命长,只要太阳存在,一次投资就可以用很长时间。与火力发电和核能发电相比,太阳能电池不会造成环境污染。

太阳能光伏发电并网原理

太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。

一、太阳能发电方式太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式。

(1) 光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。前一个过程是光—热转换过程;后一个过程是热—电转换过程,与普通的火力发电一样.太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍。

(2) 光—电直接转换方式该方式是利用光电效应,将太阳辐射能直接转换成电能,光—电转换的基本装置就是太阳能电池。太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染。

太阳能光伏发电并网原理

 太阳能光伏发电并网原理,光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。下面看看太阳能光伏发电并网原理。

 太阳能光伏发电并网原理1

 光伏发电并网原理:依靠太阳能电池组件,利用半导体材料的电子学特性,当太阳光照射在半导体PN结上,产生了较强的内建静电场,在内建静电场的作用下,将光能转化成电能。

 其工作原理是:太阳电池组件产生的直流电经并网逆变器转换成符合电网要求的交流电之后,直接进入公共电网,光伏电池方阵所产生的电力除了供给交流负载外,多余的电力反馈给电网。在阴雨天或夜晚,太阳电池组件没有产生电能或者电能不能满足负载需求时,就由电网供电。

 由于太阳能发电直接供入电网,免除配置蓄电池,省掉了蓄电池储能和释放的过程,减少了能量的损耗,并降低了系统的成本。但是,系统需要专用的并网逆变器,以保证输出的电力满足电网对电压、频率等指标的要求。因为逆变器效率的问题,会有部分能量损失。

 太阳能光伏发电并网原理2

  光伏发电的基本原理

 独立光伏发电系统由太阳能电池阵列、蓄电池、逆变器组件、控制器和负载(直流负载和交流负载)组成。因为太阳能电池产生的电能为直流,但是由于光照强度实时变化,太阳能电池输出的电压也不稳定,这时也需要蓄电池来起到一个滤波的作用,将太阳能电池产生的电压稳定在蓄电池的电压值上,

 在另外一种意义上,用蓄电池也有储能的作用,可以将过剩的电能储存起来供在光照强度较低的时候使用。如果是直流负载就可以直接接在蓄电池上工作,如果是交流负载,那么需要经过逆变器的DC-AC 变换,将直流电变成交流电,供给交流负载。

  并网光伏发电的基本原理

 独立光伏发电系统由太阳能电池阵列、蓄电池、逆变器组件、控制器和负载组成。因为需要将光伏发出来的电回馈给电网,这就需要将直流电转换为电网要求的220V、50HZ 的交流电,并且在相同相位的情况下并网,像电网供电。

 无论是独立光伏发电系统还是并网光伏发电系统,逆变系统对于交流负载和并网发电都是必不可少的,接下来我们主要就光伏分布发电中的逆变系统的相关设计进行研究。

  光伏发电逆变系统的组成

 光伏发电系统主要由太阳能电池、主回路、控制电路和负载组成。主回路主要包括DC/DC 电路、DC/AC 电路、滤波器组件。下面主要对于主回路部分的设计做介绍,其中包括主回路的拓扑结构进行分析,介绍一下全桥逆变电路的工作原理以及逆变器模块的选型,以及相关保护的设计。

  光伏发电逆变系统的拓扑结构

 通常单相电压型逆变器主要分为推挽式、半桥和全桥逆变电路三种。这三种方式根据其不同的特点应用于不同的场合。

 推挽式逆变电路的电路结构比较简单,如图3-1 所示。其上电路只需要两个晶闸管,基极驱动电路不需要隔离,驱动电路比较简单,但是晶闸管需要承受2 倍的线路峰值电压,所以适合于低输入电压的场合应用。

 同时变压器存在偏磁现象,初级绕组有中心抽头,流过的电流有效值和铜耗较大,初级绕阻两部分应紧密藕合,绕制工艺复杂。因为推挽式逆变电路对于晶闸管的耐压要求比较高,不适合作为光伏发电的.逆变系统主回路。

 相比于推挽式逆变电路,单相半桥式逆变电路中所使用的晶闸管的耐压要求就相对较低,不会有线电压峰值2 倍这么多,绝对不会超过线电压峰值。其逆变出来的波形也相对推挽式比较接近于正弦波,所以滤波的要求也相对较低。由于晶闸管的饱和压降减小到了最小,所以不是最重要的影响因素之一。

 但是由于半桥式逆变电路的结构决定其集电极电流在晶闸管导通时会增加一倍,使得在晶闸管选型的过程中,要考虑大电流、承受高压的情况,就难免会因为其价格昂贵,所以不适合作为光伏发电的逆变系统主回路。

 太阳能光伏发电并网原理3

 太阳能发电主要分为两种,一种是并网型发电,一种是独立光伏系统。二者的区别主要在于一个需要并网,可以不适用蓄电池,一个是自给自足,需要蓄电池,其他基本一致。

 基本组成如下: 光伏阵列将太阳能转变成直流电能,经逆变器的直流和交流逆变后,根据光伏电站接入电网技术规定光伏电站容量确定光伏电站接入电网的电压等级,由变压器升压后,接入中压或高压电网。

 原理如下: 光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。

 目前市面上太阳能光伏发电站的“并网模式”通常有三种:自发自用余电上网模式、全额上网模式、全部自用模式。

 首先,在这三种并网模式中选择其中一种,那么就需要根据自身的实际情况来进行选择了:比如说像普通家庭住户,大多数的人都选择自发自用余电上网的模式,这也是现在分布式光伏发电站中所用比例占最高的一种选择方式。

 这种模式的好处,是光伏电站发出来的电优先给自己家里面供电使用,然后用不掉多余的电直接自动并入到电网里面,这样的话就避免了浪费,还能赚钱。这种模式是比较适合普通家庭用户选择的,也是非常经济实惠,因为不用额外花钱买电池来储存电量。

 除了家庭用电以外,比如说工业用电、厂房屋顶、工商业楼房屋顶这些地方就是商业用电,也是比较适合自发自用余电上网模式的。

 为什么这么说呢?因为商业用电的费用比民用电费更高,如果工商业以及厂房屋顶安装光伏电站的话,那么经济效益会大大地增高,回本时间也会更短,这种选择方式是非常有利的,用不掉的电直接并网到电网上面。

声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。